www.a2zpapers.com

2316

225

5)

Class–BA/B.Sc II (Sem. IV) Subject –Mathematics

 Paper-II Number Theory

 Time Anowed : 3 Hrs
 Maximum Marks :50

 Note :- Attempt any five questions selecting atleast Two from Each Section.

Section - A

- 1. (a) For any two integers a and b, with a > 0, there exists unique integers q and r such that b = aq + r, $0 \le r < |a|$.
 - (b) If m is an integer nondivisible by 2 or 3 show that $24/m^2 + 23$. (6,4)
- 2. (a) Prove that $a^{2^n} + 1$ divides $a^{2^n} + 1$ if m > 0; & n > 0;

also prove that $(a^{2^m} + 1, a^{2^n} + 1) = \begin{cases} 1 & \text{is a is even} \\ 2 & \text{is a is odd} \end{cases}$ for

positive integers a, m,n.

- (b) Find L.C.M [714, 2030, 2205]
- 3.(a) State and prove fundamental theorem Sf Arithmetic.
 - (b) If p, q are primes such that p q = 2, show that $p^{p} + q^{q}$ is divisible by p + q i.e. $p^{p} + q^{q}$ is composite number. (5,5)
- 4. (a) If p_n is the nth prime, prove $p_n \le 2^{2^{n-1}}$.

(b) Show that 53¹⁰³ + 103⁵³ is divisible by 39. (5,5) 225/2 1

www.a2zpapers.com

www.a2zpapers.com

Section - B

- 5. (a) Solve 91 x \equiv 1053 (mod 221)
 - (b) Show that $1^5+2^5+3^5+\ldots+100^5$ is divisiblet 4. (5)

Solve $x \equiv 5 \pmod{11}$, $x \equiv 14 \pmod{29} \& x \equiv \pmod{31}$ by using Chinese Reminder Theorem

- (b) Show that $\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}$ is always an integration (6.4)
- 7. (a) State and prove Wilson's Theorem.
 - (b) For any our prime p, show that 2^2 . 4^2 6^2(p -) = $(-1)^{\frac{p+1}{2}}$ (mod p) usin

(5,5

225/

Wilson's Theorem.

- 8. (a) State and prove Euler's Theorem.
 - (b) Show that $a^{560} \equiv 1 \pmod{561}$ if gcd (a, 561) = however 561 is not a prime. (6,4)

www.a2zpapers.com

2