www. a 2 zpapers.com
2316
225
Class-BA/B.Sc II (Sem. IV)

Subject -Mathematics

Paper-II Number Theory
Time Ancued : 3 Hrs
Maximum Marks :50
Note :- Attermptrany five questions selecting atleast T?wo from Each Section.

> Section - A

1. (a) For any two integers a and b, with $a>0$, there exists unique integers q and r such that $b=a q+r$, $0 \leq r>|a|$.
(b) If m is an integer no alvisible by 2 or 3 show that $24 / \mathrm{m}^{2}+23$.
2. (a) Prove that $\mathrm{a}^{2^{n}}+1$ divides a a if $m>0$; \& $n>0$; also prove that $\left(\mathrm{a}^{2^{\mathrm{m}}}+1, \mathrm{a}^{2^{\mathrm{n}}}+1\right)=\left\{\begin{array}{l}1 \text { in is even } \\ 2\end{array}\right\}$ for positive integers a, m, n.
(b) Find L.C.M [714, 2030, 2205]
3.(a) State and prove fundamental theorem ©f Arithmetic.
(b) If p, q are primes such that $p-q=2$, show that $p^{p}+q^{q}$ is divisible by $p+q$ i.e. $p^{p}+q^{q}$ is composite number.
3. (a) If p_{n} is the nth prime, prove $p_{n} \leq 2^{2^{n-1}}$.
(b) Show that $53^{103}+103^{53}$ is divisible by 39 .
www . a2 zpapers.com

www. a2zpapers. com

Section - B

5. (a) Solve $91 x \equiv 1053(\bmod 221)$
(b) Show that $1^{5}+2^{5}+3^{5}+\ldots \ldots \ldots .+100^{5}$ is divisible 4.
6. (a) Solve $x \equiv 5(\bmod 11), x \equiv 14(\bmod 29) \& x \equiv$ (mod 31) by using Chinese Reminder Theorem
(b) Show that $\frac{\mathrm{n}^{5}}{5}+\frac{\mathrm{n}^{3}}{3}+\frac{7 \mathrm{n}}{15}$ is always an integ: $\rightarrow n$ (en.
7. (a) State and prove Wilson's Theorem.
(b) For any ad prime p, show that $2^{2} \cdot 4^{2}$ $6^{2} \ldots \ldots \ldots \ldots \ldots(p-1)=(-1)^{\frac{p+1}{2}}(\bmod p)$ usir Wilson's Theorem.
8. (a) State and prove Euler's Treopem.
(b) Show that $\mathrm{a}^{560} \equiv 1(\bmod 561)$ if Ag d $(a, 561)=$ however 561 is not a prime.
